@@ -1,7 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from .pydantic_models import Observation, Prediction
|
3 |
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
app = FastAPI()
|
6 |
|
7 |
|
@@ -14,4 +33,21 @@
|
|
14 |
@app.post("/predict", status_code=201)
|
15 |
def predict(obs: Observation) -> Prediction:
|
16 |
"""For now, just return a dummy prediction."""
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import importlib
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
from sklearn.linear_model import LogisticRegression
|
7 |
from fastapi import FastAPI
|
8 |
from .pydantic_models import Observation, Prediction
|
9 |
|
10 |
|
11 |
+
def load_model(model_name: str) -> LogisticRegression:
|
12 |
+
with importlib.resources.open_binary("app.models", model_name) as f:
|
13 |
+
model = pickle.load(f)
|
14 |
+
return model
|
15 |
+
|
16 |
+
|
17 |
+
MODEL_NAME = "iris_regression.pickle"
|
18 |
+
CLASS_FLOWER_MAPPING = {
|
19 |
+
0: 'setosa',
|
20 |
+
1: 'versicolor',
|
21 |
+
2: 'virginica',
|
22 |
+
}
|
23 |
+
model = load_model(MODEL_NAME)
|
24 |
app = FastAPI()
|
25 |
|
26 |
|
|
|
33 |
@app.post("/predict", status_code=201)
|
34 |
def predict(obs: Observation) -> Prediction:
|
35 |
"""For now, just return a dummy prediction."""
|
36 |
+
# .predict() gives us an array, but it has only one element
|
37 |
+
prediction = model.predict(obs.as_dataframe())[0]
|
38 |
+
flower_type = CLASS_FLOWER_MAPPING[prediction]
|
39 |
+
pred = Prediction(flower_type=flower_type)
|
40 |
+
return pred
|
41 |
+
|
42 |
+
|
43 |
+
@app.post("/batch_predict", status_code=201)
|
44 |
+
def batch_predict(batch: List[Observation]) -> List[Prediction]:
|
45 |
+
"""Predict the flower type for a batch of observations."""
|
46 |
+
rows = [obs.as_row() for obs in batch]
|
47 |
+
df = pd.DataFrame(rows)
|
48 |
+
output_classes = model.predict(df)
|
49 |
+
preds = [
|
50 |
+
Prediction(flower_type=CLASS_FLOWER_MAPPING[output_class])
|
51 |
+
for output_class in output_classes
|
52 |
+
]
|
53 |
+
return preds
|
@@ -1,5 +1,6 @@
|
|
1 |
from typing import Literal
|
2 |
|
|
|
3 |
from pydantic import BaseModel
|
4 |
|
5 |
|
@@ -11,6 +12,19 @@
|
|
11 |
sepal_width: float
|
12 |
petal_length: float
|
13 |
petal_width: float
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
class Prediction(BaseModel):
|
|
|
1 |
from typing import Literal
|
2 |
|
3 |
+
import pandas as pd
|
4 |
from pydantic import BaseModel
|
5 |
|
6 |
|
|
|
12 |
sepal_width: float
|
13 |
petal_length: float
|
14 |
petal_width: float
|
15 |
+
|
16 |
+
def as_dataframe(self) -> pd.DataFrame:
|
17 |
+
"""Convert this record to a DataFrame with one row."""
|
18 |
+
return pd.DataFrame([self.as_row()])
|
19 |
+
|
20 |
+
def as_row(self) -> pd.Series:
|
21 |
+
row = pd.Series({
|
22 |
+
"sepal length (cm)": self.sepal_length,
|
23 |
+
"sepal width (cm)": self.sepal_width,
|
24 |
+
"petal length (cm)": self.petal_length,
|
25 |
+
"petal width (cm)": self.petal_width,
|
26 |
+
})
|
27 |
+
return row
|
28 |
|
29 |
|
30 |
class Prediction(BaseModel):
|
@@ -21,3 +21,16 @@
|
|
21 |
assert response.status_code == 201
|
22 |
payload = response.json()
|
23 |
assert payload["flower_type"] == "setosa"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
assert response.status_code == 201
|
22 |
payload = response.json()
|
23 |
assert payload["flower_type"] == "setosa"
|
24 |
+
|
25 |
+
response = client.post(
|
26 |
+
"/predict",
|
27 |
+
json={
|
28 |
+
"sepal_length": 7.1,
|
29 |
+
"sepal_width": 3.5,
|
30 |
+
"petal_length": 3.0,
|
31 |
+
"petal_width": 0.8,
|
32 |
+
},
|
33 |
+
)
|
34 |
+
assert response.status_code == 201
|
35 |
+
payload = response.json()
|
36 |
+
assert payload["flower_type"] == "versicolor"
|